\(\int \frac {1}{(d+e x) (a^2+2 a b x+b^2 x^2)^2} \, dx\) [1522]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 107 \[ \int \frac {1}{(d+e x) \left (a^2+2 a b x+b^2 x^2\right )^2} \, dx=-\frac {1}{3 (b d-a e) (a+b x)^3}+\frac {e}{2 (b d-a e)^2 (a+b x)^2}-\frac {e^2}{(b d-a e)^3 (a+b x)}-\frac {e^3 \log (a+b x)}{(b d-a e)^4}+\frac {e^3 \log (d+e x)}{(b d-a e)^4} \]

[Out]

-1/3/(-a*e+b*d)/(b*x+a)^3+1/2*e/(-a*e+b*d)^2/(b*x+a)^2-e^2/(-a*e+b*d)^3/(b*x+a)-e^3*ln(b*x+a)/(-a*e+b*d)^4+e^3
*ln(e*x+d)/(-a*e+b*d)^4

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {27, 46} \[ \int \frac {1}{(d+e x) \left (a^2+2 a b x+b^2 x^2\right )^2} \, dx=-\frac {e^3 \log (a+b x)}{(b d-a e)^4}+\frac {e^3 \log (d+e x)}{(b d-a e)^4}-\frac {e^2}{(a+b x) (b d-a e)^3}+\frac {e}{2 (a+b x)^2 (b d-a e)^2}-\frac {1}{3 (a+b x)^3 (b d-a e)} \]

[In]

Int[1/((d + e*x)*(a^2 + 2*a*b*x + b^2*x^2)^2),x]

[Out]

-1/3*1/((b*d - a*e)*(a + b*x)^3) + e/(2*(b*d - a*e)^2*(a + b*x)^2) - e^2/((b*d - a*e)^3*(a + b*x)) - (e^3*Log[
a + b*x])/(b*d - a*e)^4 + (e^3*Log[d + e*x])/(b*d - a*e)^4

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{(a+b x)^4 (d+e x)} \, dx \\ & = \int \left (\frac {b}{(b d-a e) (a+b x)^4}-\frac {b e}{(b d-a e)^2 (a+b x)^3}+\frac {b e^2}{(b d-a e)^3 (a+b x)^2}-\frac {b e^3}{(b d-a e)^4 (a+b x)}+\frac {e^4}{(b d-a e)^4 (d+e x)}\right ) \, dx \\ & = -\frac {1}{3 (b d-a e) (a+b x)^3}+\frac {e}{2 (b d-a e)^2 (a+b x)^2}-\frac {e^2}{(b d-a e)^3 (a+b x)}-\frac {e^3 \log (a+b x)}{(b d-a e)^4}+\frac {e^3 \log (d+e x)}{(b d-a e)^4} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.00 \[ \int \frac {1}{(d+e x) \left (a^2+2 a b x+b^2 x^2\right )^2} \, dx=\frac {1}{3 (-b d+a e) (a+b x)^3}+\frac {e}{2 (b d-a e)^2 (a+b x)^2}-\frac {e^2}{(b d-a e)^3 (a+b x)}-\frac {e^3 \log (a+b x)}{(b d-a e)^4}+\frac {e^3 \log (d+e x)}{(b d-a e)^4} \]

[In]

Integrate[1/((d + e*x)*(a^2 + 2*a*b*x + b^2*x^2)^2),x]

[Out]

1/(3*(-(b*d) + a*e)*(a + b*x)^3) + e/(2*(b*d - a*e)^2*(a + b*x)^2) - e^2/((b*d - a*e)^3*(a + b*x)) - (e^3*Log[
a + b*x])/(b*d - a*e)^4 + (e^3*Log[d + e*x])/(b*d - a*e)^4

Maple [A] (verified)

Time = 2.57 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.96

method result size
default \(\frac {1}{3 \left (a e -b d \right ) \left (b x +a \right )^{3}}+\frac {e}{2 \left (a e -b d \right )^{2} \left (b x +a \right )^{2}}+\frac {e^{2}}{\left (a e -b d \right )^{3} \left (b x +a \right )}-\frac {e^{3} \ln \left (b x +a \right )}{\left (a e -b d \right )^{4}}+\frac {e^{3} \ln \left (e x +d \right )}{\left (a e -b d \right )^{4}}\) \(103\)
norman \(\frac {\frac {b^{2} e^{2} x^{2}}{a^{3} e^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}}+\frac {11 a^{2} b^{3} e^{2}-7 a \,b^{4} d e +2 b^{5} d^{2}}{6 b^{3} \left (a^{3} e^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}\right )}+\frac {\left (5 e^{2} a \,b^{3}-b^{4} d e \right ) x}{2 b^{2} \left (a^{3} e^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}\right )}}{\left (b x +a \right )^{3}}+\frac {e^{3} \ln \left (e x +d \right )}{e^{4} a^{4}-4 b \,e^{3} d \,a^{3}+6 b^{2} e^{2} d^{2} a^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}}-\frac {e^{3} \ln \left (b x +a \right )}{e^{4} a^{4}-4 b \,e^{3} d \,a^{3}+6 b^{2} e^{2} d^{2} a^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}}\) \(314\)
risch \(\frac {\frac {b^{2} e^{2} x^{2}}{a^{3} e^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}}+\frac {\left (5 a e -b d \right ) b e x}{2 a^{3} e^{3}-6 a^{2} b d \,e^{2}+6 a \,b^{2} d^{2} e -2 b^{3} d^{3}}+\frac {11 a^{2} e^{2}-7 a b d e +2 b^{2} d^{2}}{6 a^{3} e^{3}-18 a^{2} b d \,e^{2}+18 a \,b^{2} d^{2} e -6 b^{3} d^{3}}}{\left (b^{2} x^{2}+2 a b x +a^{2}\right ) \left (b x +a \right )}-\frac {e^{3} \ln \left (b x +a \right )}{e^{4} a^{4}-4 b \,e^{3} d \,a^{3}+6 b^{2} e^{2} d^{2} a^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}}+\frac {e^{3} \ln \left (-e x -d \right )}{e^{4} a^{4}-4 b \,e^{3} d \,a^{3}+6 b^{2} e^{2} d^{2} a^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}}\) \(318\)
parallelrisch \(-\frac {-11 e^{3} a^{3} b^{3}+18 d \,e^{2} a^{2} b^{4}+2 d^{3} b^{6}-9 d^{2} e a \,b^{5}+6 \ln \left (b x +a \right ) x^{3} b^{6} e^{3}-6 \ln \left (e x +d \right ) x^{3} b^{6} e^{3}+6 \ln \left (b x +a \right ) a^{3} b^{3} e^{3}-6 \ln \left (e x +d \right ) a^{3} b^{3} e^{3}-3 x \,b^{6} d^{2} e -6 x^{2} a \,b^{5} e^{3}+6 x^{2} b^{6} d \,e^{2}-15 x \,a^{2} b^{4} e^{3}+18 x a \,b^{5} d \,e^{2}+18 \ln \left (b x +a \right ) x^{2} a \,b^{5} e^{3}-18 \ln \left (e x +d \right ) x^{2} a \,b^{5} e^{3}+18 \ln \left (b x +a \right ) x \,a^{2} b^{4} e^{3}-18 \ln \left (e x +d \right ) x \,a^{2} b^{4} e^{3}}{6 \left (e^{4} a^{4}-4 b \,e^{3} d \,a^{3}+6 b^{2} e^{2} d^{2} a^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}\right ) \left (b x +a \right ) \left (b^{2} x^{2}+2 a b x +a^{2}\right ) b^{3}}\) \(321\)

[In]

int(1/(e*x+d)/(b^2*x^2+2*a*b*x+a^2)^2,x,method=_RETURNVERBOSE)

[Out]

1/3/(a*e-b*d)/(b*x+a)^3+1/2*e/(a*e-b*d)^2/(b*x+a)^2+e^2/(a*e-b*d)^3/(b*x+a)-e^3/(a*e-b*d)^4*ln(b*x+a)+e^3/(a*e
-b*d)^4*ln(e*x+d)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 425 vs. \(2 (103) = 206\).

Time = 0.33 (sec) , antiderivative size = 425, normalized size of antiderivative = 3.97 \[ \int \frac {1}{(d+e x) \left (a^2+2 a b x+b^2 x^2\right )^2} \, dx=-\frac {2 \, b^{3} d^{3} - 9 \, a b^{2} d^{2} e + 18 \, a^{2} b d e^{2} - 11 \, a^{3} e^{3} + 6 \, {\left (b^{3} d e^{2} - a b^{2} e^{3}\right )} x^{2} - 3 \, {\left (b^{3} d^{2} e - 6 \, a b^{2} d e^{2} + 5 \, a^{2} b e^{3}\right )} x + 6 \, {\left (b^{3} e^{3} x^{3} + 3 \, a b^{2} e^{3} x^{2} + 3 \, a^{2} b e^{3} x + a^{3} e^{3}\right )} \log \left (b x + a\right ) - 6 \, {\left (b^{3} e^{3} x^{3} + 3 \, a b^{2} e^{3} x^{2} + 3 \, a^{2} b e^{3} x + a^{3} e^{3}\right )} \log \left (e x + d\right )}{6 \, {\left (a^{3} b^{4} d^{4} - 4 \, a^{4} b^{3} d^{3} e + 6 \, a^{5} b^{2} d^{2} e^{2} - 4 \, a^{6} b d e^{3} + a^{7} e^{4} + {\left (b^{7} d^{4} - 4 \, a b^{6} d^{3} e + 6 \, a^{2} b^{5} d^{2} e^{2} - 4 \, a^{3} b^{4} d e^{3} + a^{4} b^{3} e^{4}\right )} x^{3} + 3 \, {\left (a b^{6} d^{4} - 4 \, a^{2} b^{5} d^{3} e + 6 \, a^{3} b^{4} d^{2} e^{2} - 4 \, a^{4} b^{3} d e^{3} + a^{5} b^{2} e^{4}\right )} x^{2} + 3 \, {\left (a^{2} b^{5} d^{4} - 4 \, a^{3} b^{4} d^{3} e + 6 \, a^{4} b^{3} d^{2} e^{2} - 4 \, a^{5} b^{2} d e^{3} + a^{6} b e^{4}\right )} x\right )}} \]

[In]

integrate(1/(e*x+d)/(b^2*x^2+2*a*b*x+a^2)^2,x, algorithm="fricas")

[Out]

-1/6*(2*b^3*d^3 - 9*a*b^2*d^2*e + 18*a^2*b*d*e^2 - 11*a^3*e^3 + 6*(b^3*d*e^2 - a*b^2*e^3)*x^2 - 3*(b^3*d^2*e -
 6*a*b^2*d*e^2 + 5*a^2*b*e^3)*x + 6*(b^3*e^3*x^3 + 3*a*b^2*e^3*x^2 + 3*a^2*b*e^3*x + a^3*e^3)*log(b*x + a) - 6
*(b^3*e^3*x^3 + 3*a*b^2*e^3*x^2 + 3*a^2*b*e^3*x + a^3*e^3)*log(e*x + d))/(a^3*b^4*d^4 - 4*a^4*b^3*d^3*e + 6*a^
5*b^2*d^2*e^2 - 4*a^6*b*d*e^3 + a^7*e^4 + (b^7*d^4 - 4*a*b^6*d^3*e + 6*a^2*b^5*d^2*e^2 - 4*a^3*b^4*d*e^3 + a^4
*b^3*e^4)*x^3 + 3*(a*b^6*d^4 - 4*a^2*b^5*d^3*e + 6*a^3*b^4*d^2*e^2 - 4*a^4*b^3*d*e^3 + a^5*b^2*e^4)*x^2 + 3*(a
^2*b^5*d^4 - 4*a^3*b^4*d^3*e + 6*a^4*b^3*d^2*e^2 - 4*a^5*b^2*d*e^3 + a^6*b*e^4)*x)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 570 vs. \(2 (88) = 176\).

Time = 0.87 (sec) , antiderivative size = 570, normalized size of antiderivative = 5.33 \[ \int \frac {1}{(d+e x) \left (a^2+2 a b x+b^2 x^2\right )^2} \, dx=\frac {e^{3} \log {\left (x + \frac {- \frac {a^{5} e^{8}}{\left (a e - b d\right )^{4}} + \frac {5 a^{4} b d e^{7}}{\left (a e - b d\right )^{4}} - \frac {10 a^{3} b^{2} d^{2} e^{6}}{\left (a e - b d\right )^{4}} + \frac {10 a^{2} b^{3} d^{3} e^{5}}{\left (a e - b d\right )^{4}} - \frac {5 a b^{4} d^{4} e^{4}}{\left (a e - b d\right )^{4}} + a e^{4} + \frac {b^{5} d^{5} e^{3}}{\left (a e - b d\right )^{4}} + b d e^{3}}{2 b e^{4}} \right )}}{\left (a e - b d\right )^{4}} - \frac {e^{3} \log {\left (x + \frac {\frac {a^{5} e^{8}}{\left (a e - b d\right )^{4}} - \frac {5 a^{4} b d e^{7}}{\left (a e - b d\right )^{4}} + \frac {10 a^{3} b^{2} d^{2} e^{6}}{\left (a e - b d\right )^{4}} - \frac {10 a^{2} b^{3} d^{3} e^{5}}{\left (a e - b d\right )^{4}} + \frac {5 a b^{4} d^{4} e^{4}}{\left (a e - b d\right )^{4}} + a e^{4} - \frac {b^{5} d^{5} e^{3}}{\left (a e - b d\right )^{4}} + b d e^{3}}{2 b e^{4}} \right )}}{\left (a e - b d\right )^{4}} + \frac {11 a^{2} e^{2} - 7 a b d e + 2 b^{2} d^{2} + 6 b^{2} e^{2} x^{2} + x \left (15 a b e^{2} - 3 b^{2} d e\right )}{6 a^{6} e^{3} - 18 a^{5} b d e^{2} + 18 a^{4} b^{2} d^{2} e - 6 a^{3} b^{3} d^{3} + x^{3} \cdot \left (6 a^{3} b^{3} e^{3} - 18 a^{2} b^{4} d e^{2} + 18 a b^{5} d^{2} e - 6 b^{6} d^{3}\right ) + x^{2} \cdot \left (18 a^{4} b^{2} e^{3} - 54 a^{3} b^{3} d e^{2} + 54 a^{2} b^{4} d^{2} e - 18 a b^{5} d^{3}\right ) + x \left (18 a^{5} b e^{3} - 54 a^{4} b^{2} d e^{2} + 54 a^{3} b^{3} d^{2} e - 18 a^{2} b^{4} d^{3}\right )} \]

[In]

integrate(1/(e*x+d)/(b**2*x**2+2*a*b*x+a**2)**2,x)

[Out]

e**3*log(x + (-a**5*e**8/(a*e - b*d)**4 + 5*a**4*b*d*e**7/(a*e - b*d)**4 - 10*a**3*b**2*d**2*e**6/(a*e - b*d)*
*4 + 10*a**2*b**3*d**3*e**5/(a*e - b*d)**4 - 5*a*b**4*d**4*e**4/(a*e - b*d)**4 + a*e**4 + b**5*d**5*e**3/(a*e
- b*d)**4 + b*d*e**3)/(2*b*e**4))/(a*e - b*d)**4 - e**3*log(x + (a**5*e**8/(a*e - b*d)**4 - 5*a**4*b*d*e**7/(a
*e - b*d)**4 + 10*a**3*b**2*d**2*e**6/(a*e - b*d)**4 - 10*a**2*b**3*d**3*e**5/(a*e - b*d)**4 + 5*a*b**4*d**4*e
**4/(a*e - b*d)**4 + a*e**4 - b**5*d**5*e**3/(a*e - b*d)**4 + b*d*e**3)/(2*b*e**4))/(a*e - b*d)**4 + (11*a**2*
e**2 - 7*a*b*d*e + 2*b**2*d**2 + 6*b**2*e**2*x**2 + x*(15*a*b*e**2 - 3*b**2*d*e))/(6*a**6*e**3 - 18*a**5*b*d*e
**2 + 18*a**4*b**2*d**2*e - 6*a**3*b**3*d**3 + x**3*(6*a**3*b**3*e**3 - 18*a**2*b**4*d*e**2 + 18*a*b**5*d**2*e
 - 6*b**6*d**3) + x**2*(18*a**4*b**2*e**3 - 54*a**3*b**3*d*e**2 + 54*a**2*b**4*d**2*e - 18*a*b**5*d**3) + x*(1
8*a**5*b*e**3 - 54*a**4*b**2*d*e**2 + 54*a**3*b**3*d**2*e - 18*a**2*b**4*d**3))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 361 vs. \(2 (103) = 206\).

Time = 0.21 (sec) , antiderivative size = 361, normalized size of antiderivative = 3.37 \[ \int \frac {1}{(d+e x) \left (a^2+2 a b x+b^2 x^2\right )^2} \, dx=-\frac {e^{3} \log \left (b x + a\right )}{b^{4} d^{4} - 4 \, a b^{3} d^{3} e + 6 \, a^{2} b^{2} d^{2} e^{2} - 4 \, a^{3} b d e^{3} + a^{4} e^{4}} + \frac {e^{3} \log \left (e x + d\right )}{b^{4} d^{4} - 4 \, a b^{3} d^{3} e + 6 \, a^{2} b^{2} d^{2} e^{2} - 4 \, a^{3} b d e^{3} + a^{4} e^{4}} - \frac {6 \, b^{2} e^{2} x^{2} + 2 \, b^{2} d^{2} - 7 \, a b d e + 11 \, a^{2} e^{2} - 3 \, {\left (b^{2} d e - 5 \, a b e^{2}\right )} x}{6 \, {\left (a^{3} b^{3} d^{3} - 3 \, a^{4} b^{2} d^{2} e + 3 \, a^{5} b d e^{2} - a^{6} e^{3} + {\left (b^{6} d^{3} - 3 \, a b^{5} d^{2} e + 3 \, a^{2} b^{4} d e^{2} - a^{3} b^{3} e^{3}\right )} x^{3} + 3 \, {\left (a b^{5} d^{3} - 3 \, a^{2} b^{4} d^{2} e + 3 \, a^{3} b^{3} d e^{2} - a^{4} b^{2} e^{3}\right )} x^{2} + 3 \, {\left (a^{2} b^{4} d^{3} - 3 \, a^{3} b^{3} d^{2} e + 3 \, a^{4} b^{2} d e^{2} - a^{5} b e^{3}\right )} x\right )}} \]

[In]

integrate(1/(e*x+d)/(b^2*x^2+2*a*b*x+a^2)^2,x, algorithm="maxima")

[Out]

-e^3*log(b*x + a)/(b^4*d^4 - 4*a*b^3*d^3*e + 6*a^2*b^2*d^2*e^2 - 4*a^3*b*d*e^3 + a^4*e^4) + e^3*log(e*x + d)/(
b^4*d^4 - 4*a*b^3*d^3*e + 6*a^2*b^2*d^2*e^2 - 4*a^3*b*d*e^3 + a^4*e^4) - 1/6*(6*b^2*e^2*x^2 + 2*b^2*d^2 - 7*a*
b*d*e + 11*a^2*e^2 - 3*(b^2*d*e - 5*a*b*e^2)*x)/(a^3*b^3*d^3 - 3*a^4*b^2*d^2*e + 3*a^5*b*d*e^2 - a^6*e^3 + (b^
6*d^3 - 3*a*b^5*d^2*e + 3*a^2*b^4*d*e^2 - a^3*b^3*e^3)*x^3 + 3*(a*b^5*d^3 - 3*a^2*b^4*d^2*e + 3*a^3*b^3*d*e^2
- a^4*b^2*e^3)*x^2 + 3*(a^2*b^4*d^3 - 3*a^3*b^3*d^2*e + 3*a^4*b^2*d*e^2 - a^5*b*e^3)*x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 243 vs. \(2 (103) = 206\).

Time = 0.26 (sec) , antiderivative size = 243, normalized size of antiderivative = 2.27 \[ \int \frac {1}{(d+e x) \left (a^2+2 a b x+b^2 x^2\right )^2} \, dx=-\frac {b e^{3} \log \left ({\left | b x + a \right |}\right )}{b^{5} d^{4} - 4 \, a b^{4} d^{3} e + 6 \, a^{2} b^{3} d^{2} e^{2} - 4 \, a^{3} b^{2} d e^{3} + a^{4} b e^{4}} + \frac {e^{4} \log \left ({\left | e x + d \right |}\right )}{b^{4} d^{4} e - 4 \, a b^{3} d^{3} e^{2} + 6 \, a^{2} b^{2} d^{2} e^{3} - 4 \, a^{3} b d e^{4} + a^{4} e^{5}} - \frac {2 \, b^{3} d^{3} - 9 \, a b^{2} d^{2} e + 18 \, a^{2} b d e^{2} - 11 \, a^{3} e^{3} + 6 \, {\left (b^{3} d e^{2} - a b^{2} e^{3}\right )} x^{2} - 3 \, {\left (b^{3} d^{2} e - 6 \, a b^{2} d e^{2} + 5 \, a^{2} b e^{3}\right )} x}{6 \, {\left (b d - a e\right )}^{4} {\left (b x + a\right )}^{3}} \]

[In]

integrate(1/(e*x+d)/(b^2*x^2+2*a*b*x+a^2)^2,x, algorithm="giac")

[Out]

-b*e^3*log(abs(b*x + a))/(b^5*d^4 - 4*a*b^4*d^3*e + 6*a^2*b^3*d^2*e^2 - 4*a^3*b^2*d*e^3 + a^4*b*e^4) + e^4*log
(abs(e*x + d))/(b^4*d^4*e - 4*a*b^3*d^3*e^2 + 6*a^2*b^2*d^2*e^3 - 4*a^3*b*d*e^4 + a^4*e^5) - 1/6*(2*b^3*d^3 -
9*a*b^2*d^2*e + 18*a^2*b*d*e^2 - 11*a^3*e^3 + 6*(b^3*d*e^2 - a*b^2*e^3)*x^2 - 3*(b^3*d^2*e - 6*a*b^2*d*e^2 + 5
*a^2*b*e^3)*x)/((b*d - a*e)^4*(b*x + a)^3)

Mupad [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 312, normalized size of antiderivative = 2.92 \[ \int \frac {1}{(d+e x) \left (a^2+2 a b x+b^2 x^2\right )^2} \, dx=\frac {\frac {11\,a^2\,e^2-7\,a\,b\,d\,e+2\,b^2\,d^2}{6\,\left (a^3\,e^3-3\,a^2\,b\,d\,e^2+3\,a\,b^2\,d^2\,e-b^3\,d^3\right )}-\frac {e\,x\,\left (b^2\,d-5\,a\,b\,e\right )}{2\,\left (a^3\,e^3-3\,a^2\,b\,d\,e^2+3\,a\,b^2\,d^2\,e-b^3\,d^3\right )}+\frac {b^2\,e^2\,x^2}{a^3\,e^3-3\,a^2\,b\,d\,e^2+3\,a\,b^2\,d^2\,e-b^3\,d^3}}{a^3+3\,a^2\,b\,x+3\,a\,b^2\,x^2+b^3\,x^3}-\frac {2\,e^3\,\mathrm {atanh}\left (\frac {a^4\,e^4-2\,a^3\,b\,d\,e^3+2\,a\,b^3\,d^3\,e-b^4\,d^4}{{\left (a\,e-b\,d\right )}^4}+\frac {2\,b\,e\,x\,\left (a^3\,e^3-3\,a^2\,b\,d\,e^2+3\,a\,b^2\,d^2\,e-b^3\,d^3\right )}{{\left (a\,e-b\,d\right )}^4}\right )}{{\left (a\,e-b\,d\right )}^4} \]

[In]

int(1/((d + e*x)*(a^2 + b^2*x^2 + 2*a*b*x)^2),x)

[Out]

((11*a^2*e^2 + 2*b^2*d^2 - 7*a*b*d*e)/(6*(a^3*e^3 - b^3*d^3 + 3*a*b^2*d^2*e - 3*a^2*b*d*e^2)) - (e*x*(b^2*d -
5*a*b*e))/(2*(a^3*e^3 - b^3*d^3 + 3*a*b^2*d^2*e - 3*a^2*b*d*e^2)) + (b^2*e^2*x^2)/(a^3*e^3 - b^3*d^3 + 3*a*b^2
*d^2*e - 3*a^2*b*d*e^2))/(a^3 + b^3*x^3 + 3*a*b^2*x^2 + 3*a^2*b*x) - (2*e^3*atanh((a^4*e^4 - b^4*d^4 + 2*a*b^3
*d^3*e - 2*a^3*b*d*e^3)/(a*e - b*d)^4 + (2*b*e*x*(a^3*e^3 - b^3*d^3 + 3*a*b^2*d^2*e - 3*a^2*b*d*e^2))/(a*e - b
*d)^4))/(a*e - b*d)^4